
Partition-Based Block Matching of
Large Class Hierarchies

Wei Hu, Yuanyuan Zhao, and Yuzhong Qu

School of Computer Science and Engineering, Southeast University,
Nanjing 210096, P. R. China

{whu, yyzhao, yzqu}@seu.edu.cn

Abstract. Ontology matching is a crucial task of enabling interopera-
tion between Web applications using different but related ontologies. Due
to the size and the monolithic nature, large-scale ontologies regarding
real world domains cause a new challenge to current ontology matching
techniques. In this paper, we propose a method for partition-based block
matching that is practically applicable to large class hierarchies, which
are one of the most common kinds of large-scale ontologies. Based on
both structural affinities and linguistic similarities, two large class hi-
erarchies are partitioned into small blocks respectively, and then blocks
from different hierarchies are matched by combining the two kinds of
relatedness found via predefined anchors as well as virtual documents
between them. Preliminary experiments demonstrate that the partition-
based block matching method performs well on our test cases derived
from Web directory structures.

1 Introduction

Large-scale ontologies are a kind of ontologies created to describe complex real
world domains. Large class hierarchies are one of the most common kinds of
large-scale ontologies. Due to the decentralized nature of the Web, these large
ontologies or class hierarchies for the same domain aren’t unique. Examples
can be found in: (a) Web directory structures, e.g., Google and Yahoo [1]; (b)
product description standards, e.g., NAICS1 and UNSPSC2; and (c) medicine
or biology, e.g., GALEN3 and FMA4. In order to achieve interoperation among
Semantic Web applications using these large ontologies or class hierarchies, on-
tology matching is necessary. However, the size and the monolithic nature of
these large ontologies or class hierarchies cause a new challenge to current on-
tology matching techniques. Therefore, some novel solutions are required.

In this paper, we propose a method for partition-based block matching that is
practically applicable to large class hierarchies. Based on both structural affini-
ties and linguistic similarities, two large class hierarchies are partitioned into
1 http://www.naics.com
2 http://www.unspsc.org
3 http://www.opengalen.org
4 http://sig.biostr.washington.edu/projects/fm

small blocks respectively, and then blocks from different hierarchies are matched
by combining the two kinds of relatedness found via predefined anchors as well
as virtual documents between them. Usually, structural affinities are computed
by how closely they are related in the hierarchies, and linguistic similarities are
computed by examining the similarities between the descriptions of the classes.
The combinations of structural affinities and linguistic similarities are used to
reflect the weighted links between the classes. Thus, large class hierarchies can
be divided into small blocks base on an efficient linkage-based partitioning algo-
rithm, e.g., ROCK [7]. Thereafter, two kinds of relatedness between blocks are
found: one is via anchors which can be predefined by some simple methods or by
experts; the other is via virtual documents [9]. These two kinds of relatedness
are combined to match blocks in the end. The overview of the matching process
is illustrated in Figure 1.

onto1

onto2 Partitioning

Matching blocks
by anchors

anchors

matched
block
pairsMatching blocks

by vrtual documents

PartitioningPreprocessing

Preprocessing

Fig. 1. The overview of the matching process

The rest of the paper is organized as follows: in the next section, some related
works are introduced. In Section 3, we propose an efficient algorithm to partition
large class hierarchies into small blocks. In Section 4, we present an approach to
matching blocks. In Section 5, we show some preliminary experimental results
to demonstrate the effectiveness of the method. In Section 6, we conclude with
some directions for future work.

2 Related Work

Today, quite a lot of ontology matching or aligning approaches exist in literature,
such as QOM [4], OLA [5], and V-Doc [9]. Please see [11] for a good survey
about more representative approaches. However, most of these approaches have
been developed for small-scale ontologies. For example, in V-Doc, when the
ontologies to be matched have thousands of concepts, the matching process will
take insufferably long time, and sometimes even cannot work. Another limit in
current approaches is that most of them aim at 1:1 matching, not block matching
(the relationship cardinality of the matching is many-to-many). Even in the field
of schema matching, there are only a few works addressing the block matching
issue, such as Artemis [2] and iMAP [3]. Artemis firstly computes 1:1 matching
by using WordNet, and then generates block matching from the 1:1 matching by

a hierarchical clustering algorithm. It is clear that this method is not targeted
to large-scale ontologies because of its computational complexity for computing
the 1:1 matching. iMAP semi-automatically discovers both 1:1 and complex
mappings (e.g., room-price = room-rate ∗ (1 + tax-rate)). It exploits two new
kinds of domain knowledge, i.e., overlap data and external data, to discover
complex mappings. However, iMAP may be not a universal solution because it’s
not easy to specify the domain knowledge in some special cases.

The issue of partitioning large-scale ontologies (including large class hierar-
chies) has been recently addressed in [6, 13, 14], etc. In [6], an efficient solution
for partitioning ontologies is provided by using ε-Connections. It guarantees that
all concepts which have subsumption relations can be partitioned into one block,
which becomes a limitation for ontology matching. In [13], large class hierarchies
are automatically partitioned into small blocks. The background techniques are
dependency graph and “island” algorithm. Although the main contribution of
[14] is for ontology visualization, it also presents a method for ontology par-
titioning by Force Directed Placement algorithm. The main problem of these
work is that they do not much concentrate on the sizes of blocks, so they do
not well support ontology matching. For example, by applying ε-Connections to
GALEN, we can gain only one block including nearly 10,000 concepts, which is
not an appropriate size for ontology matching.

Compared with them, our method for partition-based block matching has
three features: (a) it is efficient for large class hierarchies. In particular, the
time complexity of the partitioning algorithm is O(n2); (b) it aims at block
matching, because we believe it seems more useful for large class hierarchies
than the current 1:1 matching; and (c) the sizes of most blocks are small enough
to apply current ontology matching techniques to them.

3 Ontology Partitioning

In this section, we firstly introduce the notion of weighted links which are gener-
ated by combining two kinds of partitioning features extracted from large class
hierarchies. Then, we present an efficient partitioning algorithm based on these
weighted links.

3.1 Partitioning Features

In our investigation, large class hierarchies usually have two distinguishing char-
acteristics: (a) they are often represented in DAG (Directed Acyclic Graph)
structures and is-a relations are the most important built-in relations in large
class hierarchies. An example is UNSPSC, it has 16500 classes, and the num-
ber of rdfs:subClassOf relations is 16500; and (b) linguistic similarities can be
found between the local descriptions (e.g., local names, labels, comments) of the
classes in these hierarchies. Therefore, two kinds of partitioning features can be
extracted from large class hierarchies: one is structural affinities, which are based
on (a); the other is linguistic similarities, which are based on (b).

Structural affinities between classes are defined by how closely they are re-
lated in the hierarchies, i.e., their structural closeness.

Definition 1 (Structural Affinities between Classes). Let ci, cj be two
classes. cij is the common superclass of ci and cj. depthOf(ck) returns the depth
of class ck in the class hierarchy. The structural affinity between ci and cj is
defined as follows:

affs(ci, cj) =
2 · depthOf(cij)

depthOf(ci) + depthOf(cj)
. (1)

This equation has also been proposed in [14]. Please note that computing
structural affinities between all the classes is time-consuming. Usually, only com-
puting the affinities between the classes with adjacent depthes can obtain mod-
erate results. In our experiments, we only compute structural affinities between
the classes which satisfy |depthOf(ci)− depthOf(cj)| ≤ 1.

Linguistic similarities are computed by examining the similarities between
the local descriptions of the classes. Here, we adopt the string comparison method
proposed in [12]. It considers that the similarity between two descriptions of two
classes is related to their commonalities as well as to their differences.

Definition 2 (Linguistic Similarities between Classes). Let di be the de-
scription of class ci, dj be the description of class cj. The linguistic similarity
between ci and cj is defined as follows:

siml(ci, cj) = comm(di, dj)− diff(di, dj) + winkler(di, dj), (2)

where comm(di, dj) stands for the commonality between di and dj, diff(di, dj)
for the difference, and winkler(di, dj) for the improvement of the result using
the method introduced by Winkler in [15].

The experimental results shown in [12] indicate that 0.65 is a good threshold,
i.e., when siml(c1, c2) < 0.65, c1 and c2 would not be considered similar. In our
experiments, we also find this threshold performs well in most scenarios, so we
still take this threshold.

Finally, weighted links between classes are generated by combining the struc-
tural affinities and the linguistic similarities.

Definition 3 (Links between Classes). Let ci, cj be two classes. ε1 is a given
threshold which satisfies ε1 ∈ [0, 1). The weighted link between ci and cj is defined
as follows:

link(ci, cj) =

{
aff(ci, cj) if aff(ci, cj) > ε1

0 otherwise
, (3)

aff(ci, cj) = α · affs(ci, cj) + (1− α) · siml(ci, cj), (4)

where α ∈ [0, 1], and the selection of the parameter α depends on the structural
and linguistic characteristics of the large class hierarchies.

We choose a small ε1 for link filtering in our experiments, because the linkage
among the classes is sparse, using a large ε1 may cause many small “island”
blocks, i.e., each block only contains several classes.

3.2 Partitioning Algorithm

Our partitioning algorithm is an agglomerative hierarchical partitioning algo-
rithm mainly inspired by ROCK [7], which is a famous agglomerative clustering
algorithm in the field of Data Mining. The main difference between ROCK and
ours is that ROCK assumes that all the links between classes are the same; while
we import the notion of weighted links, which reflect the information about the
closeness between classes. Our algorithm accepts as input the set of n blocks to
be clustered, which is denoted by B, and the desired number of blocks k, which is
initially determined by application requirement. In each partitioning iteration,
it selects the block having the maximum cohesiveness firstly, then choose the
block having the maximum coupling with it, and finally merge these two blocks
into a new block. The pseudo code of the algorithm is presented in Table 1.

Table 1. The partitioning algorithm

procedure(B, k)
for each block Bi in B, do begin

initialize the internal sum of links within Bi, called cohesiveness;
initialize the sum of links between Bi and others, called coupling ;

end
while the number of current blocks m > k do begin

choose the best block Bi, which has the maximum cohesiveness;
choose one block from the rest, which has the maximum coupling;
merge block Bi and Bj named Bp;
update Bp’s cohesiveness and coupling;
remove Bi and Bj ;
for each block other than Bp, update it’s coupling;
m := m− 1;

end
end

The time complexity of this algorithm is O(n2). Compared with most other
clustering or partitioning algorithms, it is quite efficient. Though k-means method
is faster, it is worthy of noting that the means of the blocks are virtual entities,
and if we change the means to the real entities (called k-medoids method), the
time complexity also becomes O(n2) (e.g., PAM [8]). In addition, the centroid-
based clustering algorithms aren’t suitable for blocks of widely different sizes.

The most important point of the partitioning algorithm shown above is the
computation of cohesiveness and coupling. Here, goodness() is used to compute
the cohesiveness and coupling, and it measures the distance of two clusters by
comparing the aggregate inter-connectivity of them.

Definition 4 (Goodness). Let Bi, Bj be two blocks. sizeOf(Bk) returns the
number of the classes in Bk. The goodness between Bi and Bj is computed as

follows:

goodness(Bi, Bj) =

∑
ci∈Bi,cj∈Bj

link(ci, cj)

sizeOf(Bi) · sizeOf(Bj)
, (5)

when Bi, Bj are the same block, it computes the cohesiveness of the block; when
Bi, Bj are two different blocks, it computes the coupling between them.

As pointed out in [7], choosing the denominator as sizeOf(Bi)+sizeOf(Bj)
is ill-considered. Though it may work well on well-separated blocks, in case of
outliers or blocks with the classes that are neighbors, a large block may swallow
other blocks and thus, the classes from different blocks may be merged into a
single block. This is because a larger block typically would have a larger number
of cross links with other blocks.

4 Block Matching

In this section, we present an approach to matching blocks. As shown in Figure 1,
after partitioning pairwise large class hierarchies into two sets of small blocks
respectively, we can find two kinds of relatedness between blocks from different
sets: one is via predefined anchors; the other is via virtual documents [9]. The
two kinds of relatedness are combined to match blocks.

Please note that we only match blocks here, because: (a) blocks give a sketch
of large class hierarchies, matching them is helpful for users to understand the
correspondence between two large class hierarchies; and (b) the sizes of matched
block pairs are usually small enough to take current ontology matching tech-
niques to generate accurate 1:1 matching.

4.1 Relatedness between Blocks via Anchors

Predefined matched class pairs, called anchors, are utilized to find relatedness
between blocks. The anchors can be defined by some simple approaches or by
experts. For example, the following steps are taken to gain the anchors in our
experiments. Please note that the trade-off between the correctness and the
number of the anchors should be considered.

1. Find a set of high precision matched class pairs as starting points. This could
be done with some string comparison techniques, e.g., [12].

2. Manually remove some incorrect matched class pairs.
3. Manually add some omissions.

Then, the relatedness between blocks can be computed via the anchors gained
above. The background idea is that the more anchors we have found between
the two blocks, the more related the two blocks are.

Definition 5 (Relatedness between Blocks via Anchors). Let Bi be a
block in class hierarchy H while B

′
j be a block in another class hierarchy H

′
. k

denotes the number of the blocks in H, and k
′
denotes the number of the blocks

in H
′
. anchors(Bu, B

′
v) returns the number of predefined anchors between Bu

and B
′
v. The relatedness between Bi and B

′
j is defined as follows:

rela(Bi, B
′
j) =

2 · anchors(Bi, B
′
j)∑k

u=1 anchors(Bu, B
′
j) +

∑k′

v=1 anchors(Bi, B
′
v)

. (6)

4.2 Relatedness between Blocks via Virtual Documents

Relatedness between blocks are also computed via virtual documents, together
with the prevalent TF/IDF [10] technique. In [9], the virtual documents are
constructed for concepts (classes, properties or instances) from two ontologies.
In this paper, the virtual document of a block is an aggregation of the virtual
documents of the classes contained in the block.

The virtual document of a block consists of a collection of weighted tokens,
which originate from the local descriptions (e.g., local names) of all the classes it
contains and incorporate a weighting scheme to reflect the importance of infor-
mation appeared in different categories (e.g., tokens appeared in rdfs:label are
more important than those appeared in rdfs:comment). These weighted tokens
can be used to reflect the intended meaning of the block.

Then, the virtual document of each block can be represented as a vector in
the vector space. The components of the vector are the scores from corresponding
tokens, which reflect the relatedness between tokens and the block. The higher
the score is, the more the token is related to the block. In addition to the selection
of tokens to represent the block, it is common to associate a weight to each token
in a block to reflect the importance of that token. Thus, TF/IDF technique is
adopted to optimize the vector representation.

Definition 6 (Relatedness between Blocks via Virtual Documents). Let
Bi be a block in class hierarchy H while B

′
j be a block in another class hierarchy

H
′
. sik denotes the score of a unique token tik in Bi, and s

′
jk denotes the score of

a unique token t
′
jk in B

′
j. D is the dimension of the vector space. The relatedness

between Bi and B
′
j is measured by the cosine value between two vectors:

relv(Bi, B
′
j) =

∑D
k=1 siks

′
jk√∑D

k=1(sik)2 ·∑D
k=1(s

′
jk)2

. (7)

If the vectors of Bi, B
′
j don’t share any tokens, the relatedness will be 0.0; if

all the token scores equal completely, it will be 1.0. The score of a unique token
tk in a specific block is defined as follows:

score(tk) = tf · idf
=

t

T
· 1
2
(1 + log2

N

n
), (8)

where t denotes the refined token occurrence, T denotes the total refined oc-
currence among all the tokens in a specific block, n denotes the number of the
blocks containing this token, and N denotes the number of all the blocks.

4.3 Combination

The two kinds of relatedness between blocks computed above are combined to
form the overall relatedness. The background assumption is the overall related-
ness between two blocks is higher than the one between two other blocks, then
it means that the former matched block pairs have more in common than the
latter ones.

Definition 7 (Overall Relatedness between Blocks). Let Bi be a block in
class hierarchy H while B

′
j be a block in another class hierarchy H

′
. The overall

relatedness between Bi and B
′
j is defined as follows:

rel(Bi, B
′
j) = β · rela(Bi, B

′
j) + (1− β) · relv(Bi, B

′
j), (9)

where β ∈ [0, 1].

Finally, after combining the relatedness between all the blocks from two hi-
erarchies, we select the matched block pairs whose overall relatedness are larger
than a given threshold ε2.

5 Experimental Results

In this section, we present some preliminary experimental results in order to
evaluate the performance of the partition-based block matching method. To the
best of our knowledge, no existing work has shown the experimental results on
matching the blocks of large class hierarchies, so we cannot make an objective
comparison and measurement. Although manually observing these results is te-
dious and error-prone, we still believe the evaluation is essential to make progress
in this difficult problem.

We apply a pairwise large class hierarchies available in OWL – two Web
directory structures proposed in [1] (the data set can be downloaded from OAEI
20055) – to evaluate the performance of our method. Due to lack of space, we
don’t list the classes contained in each block, the complete results of all the
experiments can be found at our Web site that accompanies this paper6.

5.1 Labeling Blocks

Before introducing the experimental results, it is helpful to label the blocks by
representative classes to assist the evaluation. We derive from the descriptions
5 http://oaei.inrialpes.fr/2005/directory/
6 http://xobjects.seu.edu.cn/project/falcon/matching/

of the most important classes to display the blocks for human observation and
understanding. Here, we simply compute the importance of each class based on
the size of its children in the block as well as its relative depth.

Definition 8 (Importance). Let Bi be a block. ci is a class in Bi, and Cchild
i

is the set of ci’s children which are also in Bi. |Cchild
i | returns the number of

classes in Cchild
i . depthOf(ci) returns the depth of class ci in the class hierarchy.

The importance of ci in Bi is defined as follows:

importance(ci) = |Cchild
i | − 2relativeDepth(ci), (10)

relativeDepth(ci) = depthOf(ci)−minck∈Bi
(depthOf(ck)), (11)

where the first part of importance(ci) gives more importance to the classes with
more children; while the second part gives less importance to the classes deeper
in the class hierarchy.

After computing the importance of all the classes in a specific block, the
descriptions of the most important class is selected for the purpose of displaying
the block.

5.2 Web Directory Structures

The data set are constructed from Google, Yahoo and Looksmart Web directories
as described in [1]. The data set contains 2265 pairwise ontology files and each
file contains a path of rdfs:subClassOf relations from the leaf class to the root.
In our experiments, we firstly merge these 2265 pairwise files to two large class
hierarchies, namely the source ontology and the target ontology, and then we
apply the partition-based block matching method to them. Experiments are
carried out on a 2.8GHz Pentium 4 with 512MB of RAM running on Windows
XP Service Pack 2. The parameters used in the experiments are as follows: α in
Equation (4) is 0.5, β in Equation (9) is 0.5, ε1 for links filtering is 0, and ε2 for
selecting matched block pairs is 0.15.

As depicted in Figure 1, the process of the partition-based block matching
method can be divided into three steps. The first step is preprocessing, including
loading two large class hierarchies, parsing them and generating links. The next
involves partitioning the two hierarchies into blocks, which are then saved to
disk. The final step is matching blocks by combining the two kinds of relatedness
found via anchors as well as virtual documents. Table 2 gives a breakdown of
how long various steps of the matching process take.

Table 2. The runtime per step

preprocessing partitioning matching blocks

time 22s 4s 18s

By preprocessing the two large class hierarchies, the source ontology contains
1067 classes, the number of rdfs:subClassOf relations is 1313, the maximum

depth is 10, and the number of links is 4063; the target ontology contains 1560
classes, the number of rdfs:subClassOf relations is 2331, the maximum depth is
9, and the number of links is 6921. In the partitioning step, the source ontology
is partitioned into 6 blocks, the maximum size of the blocks is 204, the minimum
size is 142 and the average size is 178; while the target ontology is partitioned
into 7 blocks, the maximum size of the blocks is 417, the minimum size is 105
and the average size is 223. Finally, in the step of matching blocks, 512 anchors
are found by [12], the two kinds of relatedness between blocks are computed via
the found anchors as well as virtual documents, and they are combined to gain 9
matched block pairs. The summary of the experimental results on Web directory
structures is shown in Table 3.

Table 3. The summary of the experimental results

name classes subClassOf depth links blocks anchors pairs

source 1067 1313 10 4063 6
521 9

target 1560 2331 9 6921 7

The graph depicted in Figure 2 shows some useful details of the experimental
results. The cycles at the left side represent the blocks of the source ontology
and the cycles at the right side represent the blocks of the target ontology. The
size of each cycle reflects the number of classes the block contains. The value on
each arc shows the overall relatedness between the two matched block pairs.

[170] Cooking

[204] Software

[180] Health

[200] Video Games

[142] Sports

[171] United States

[181] Games

[129] Software

[263] U.S. States

[227] Recipes

[105] Sport

[244] Music

[417] Diseases
and Conditions

0.31

0.19

0.31

0.32

0.20

0.16

0.16

0.27

0.16

Fig. 2. The details of the experimental results

Discussion. (a) The complete process of the partition-based block matching
method takes 44s to complete. Half of the time is spent for preprocessing the two
large class hierarchies. It can also be observed that blocks from large class hi-
erarchies can be partitioned with good computational efficiency; (b) 9 matched
block pairs are found, 5 matched block pairs are exactly correct by manually
evaluating; while 1 potential matched block pairs is missing (Sports vs. Sport),
because the number of the anchors from these two blocks is few and the related-
ness found via virtual documents is also low due to lack of common tokens. So the
approximate precision of our results is 0.56 (5/9) and the recall is 0.83 (5/6); and
(c) current ontology matching techniques can be applied to the matched block
pairs for generating 1:1 matched class pairs, for example, we apply V-Doc [9] to
the 9 matched block pairs, and then find 798 1:1 matched class pairs.

6 Conclusion and Future Work

In this paper, we propose a method for partition-based block matching that is
practically applicable to large class hierarchies. The main contributions of this
paper are as follows:

– We present a partitioning algorithm based on both structural affinities and
linguistic similarities. The partitioning algorithm is efficient for large class
hierarchies, and the time complexity is O(n2).

– We introduce an approach to matching blocks, which selects matched block
pairs by combining the two kinds of relatedness found via predefined anchors
as well as virtual documents.

– We describe some preliminary experiments to demonstrate that the partition-
based block matching method performs well on our test cases derived from
Web directory structures.

As the next step, we are planning to make a comparison between our parti-
tioning algorithm and some others, and the comparison includes both effective-
ness and efficiency. Another direction of future research is extending the scope of
our method to large-scale ontologies, including both classes and properties. The
third direction is how to co-partition (co-clustering) two ontologies, this issue
has not yet been touched in the field of ontology matching.

Acknowledgements

The work is supported in part by the NSFC under Grant 60573083, and in part
by the JSNSF under Grant BK2003001. The third author of this paper is also
supported by NCET (New Century Excellent Talents in University) Program
under Grant NCET-04-0472. We would like to thank Ningsheng Jian and Dong-
dong Zheng for their work in the experiments related to this paper. We would
also like to thank anonymous reviewers for their helpful suggestions.

References

1. Avesani, P., Giunchiglia, F., and Yatskevich, M.: A Large Scale Taxonomy Mapping
Evaluation. Proceedings of the 4th International Semantic Web Conference. (2005)
67–81

2. Castano, S., De Antonellis, V., and De Capitani Di Vimercati, S.: Global View-
ing of Heterogeneous Data Sources. IEEE Transactions on Knowledge and Data
Engineering. 13(2) (2001) 277–297

3. Dhamankar, R., Lee, Y., Doan, A. H., Halevy, A., and Domingos, P.: iMAP: Dis-
covering Complex Semantic Matches between Database Schemas. Proceedings of
the 23th ACM SIGMOD International Conference on Management of Data. (2004)
383–394

4. Ehrig, M., and Staab, S.: QOM - Quick Ontology Mapping. Proceedings of the 3rd
International Semantic Web Conference. (2004) 683–696

5. Euzenat, J., and Valtchev, P.: Similarity-Based Ontology Alignment in OWL-Lite.
Proceedings of the 16th European Conference on Artificial Intelligence. (2004)
333–337

6. Grau, B., Parsia, B., Sirin, E., and Kalyanpur, A.: Automatic Partitioning of OWL
Ontologies Using ε-Connections. Proceedings of the 2005 International Workshop
on Description Logics. (2005)

7. Guha, S., Rastogi, R., and Shim, K.: ROCK: A Robust Clustering Algorithm for
Categorical Attributes. Proceedings of the 15th International Conference on Data
Engineering. (1999) 512–521

8. Kaufman, L., and Rousseeuw, P.: Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley & Sons. (1990)

9. Qu, Y. Z., Hu, W., and Cheng, G.: Constructing Virtual Documents for Ontology
Matching. Proceedings of the 15th International World Wide Web Conference.
(2006) 23–31

10. Salton, G., and McGill, M. H.: Introduction to Modern Information Retrieval.
McGraw-Hill. (1983)

11. Shvaiko, P., and Euzenat, J.: A Survey of Schema-Based Matching Approaches.
Journal on Data Semantics (IV). (2005) 146–171

12. Stoilos, G., Stamou, G., and Kollias, S.: A String Metric for Ontology Alignment.
Proceedings of the 4th International Semantic Web Conference. (2005) 623–637

13. Stuckenschmidt, H., and Klein, M.: Structure-Based Partitioning of Large Concept
Hierarchies. Proceedings of the 3rd International Semantic Web Conference. (2004)
289–303

14. Tu, K., Xiong, M., Zhang, L., Zhu, H., Zhang, J., and Yu, Y.: Towards Imaging
Large-Scale Ontologies for Quick Understanding and Analysis. Proceedings of the
4th International Semantic Web Conference. (2005) 702–715

15. Winkler, W.: The State Record Linkage and Current Research Problems. Technical
Report, Statistics of Income Division, Internal Revenue Service Publication. (1999)

